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A study of the structure of the magnetohydrodynamic 
switch-on shock in steady plane motion 

By Z. 0. BLEVISST 
Douglas Aircraft Co., Inc., Santa Monica, California 

(Received 3 November 1959 and in revised form 10 March 1960) 

The structure of the steady magnetohydrodynamic switch-on shock wave is 
investigated for several orderings of the four diffusivities involved in the problem. 
The various orderings are approximated to by allowing one or more of the appro- 
priate diffusivities to approach zero, and approximate solutions that are uniformly 
valid to order unity are sought. In  general, singular perturbation problems are 
encountered, the number occurring (from zero to a maximum of three) depending 
upon the ordering of the diffusivities and the magnitude of the downstream 
velocity normal to the shock relative to certain critical velocities downstream of 
the shock. Where necessary, the approximate solutions are rendered uniformly 
valid to first order by the insertion of boundary layers, for which the approximate 
equations are determined to first order. For most of the cases considered, the 
limiting forms of the integral curves are determined and they are sketched in 
appropriate three-dimensional phase spaces. 

1. Introduction 
The study of the structure of steady magnetohydrodynamic shock waves in 

plane motion using continuum theory was initiated by Marshall (1956). He 
studied the ‘parallel’ shock, i.e. a case where the flow is normal and the magnetic 
field is parallel to the shock. He obtained explicit results for the shock structure for 
two limiting cases : (i) magnetic diffusivity large (low electrical conductivity), and 
(ii) magnetic diffusivity small (high electrical conductivity) compared with the 
other diffusivities. The parallel shock for the case of low electrical conductivity 
was also studied by Burgers (1957) and Whitham (1959). Recently, Ludford 
(1959) studied, in addition to the parallel shock, some general features of switch- 
on, switch-off, and transverse magnetohydrodynamic shocks, as defined by 
Friedrichs (1957). His treatment is essentially restricted to moderate to low 
electrical conductivity. Independently, Bleviss (1959) investigated in detail the 
structure of the switch-on shock for the case of low electrical conductivity. 

This paper presents a more general investigation of the structure of the switch- 
on shock. The switch-on shock is a shock that has the velocity and magnetic field 
vectors normal to it on the upstream side and oblique to it on the downstream 
side (see figure 1). The name derives from the fact that tangential components of 
velocity and magnetic field are ‘switched-on’. This turning of the normal flow, 
which is not possible with hydrodynamic shocks, is accomplished here by Maxwell 
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stresses that are parallel to the shock front. This shock is of interest because of its 
peculiar properties and because it is generally more complex than the parallel 
shock. 

The equations that govern the shock structure can be reduced to a system of 
four first-order non-linear ordinary differential equations. In  this system of 
equations, each of the four different derivatives is multiplied by a different one 
of the four diffusivities. In  general, this system of equations must be solved 
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FIGURE 1. Switch-on shock 
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numerically. When order-of-magnitude differences occur among the diffusivities, 
the system of equations can be approximated to by allowing the appropriate 
diffusivities to approach zero. These limiting cases are, of course, simpler and 
many of them can be solved analytically. A few of the many possible order-of- 
magnitude orderings of the diffusivities represent physically realistic cases, the 
other cases being only of mathematical interest. 

In  this paper, several such limiting cases are investigated and approximate 
solutions that are uniformly valid to order unity are sought. In  general, ‘singular 
perturbation ’ or ‘ boundary-layer type ’ problems are encountered and they are 
investigated by studying the limiting forms of the integral curves in phase space. 
The conditions for the appearance and location of the boundary layers and the 
boundary-layer equations to first order are determined. 

A discussion of the validity of some of the main assumptions and of the neces- 
sary (but not sufficient) conditions for the existence of a switch-on shock has been 
given by Bleviss (1 959) and is not repeated here. The sufficiency conditions, which 
must depend upon the boundary conditions, are not known and will not be 
discussed, but a paper by Cole (1959) sheds some light on this subject. 

2. Discussion of equations of motion 
The steady, plane, continuum flow of a compressible, viscous, heat conducting, 

electrically conducting, electrically neutral, perfect gas is considered. The 
electrical conductivity is assumed to be a scalar. The equations of motion for the 
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switch-on shock will not be derived here since they have already been given by 
Bleviss (1959), or can be readily deduced from a convenient form of the general 
equations of steady magnetohydrodynamics as given by Bleviss (1958). A system 
of four first-order non-linear ordinary differential equations in the four dependent 
variables B, w, u and T is obtained by eliminating the variablesp, p and h through 
the use of the continuity equation pu = m = constant and the perfect gas relations 
p = pRT and h = C,T, where B is the magnetic field component parallel to the 
shock, w and u are the velocity components parallel and normal, respectively, 
and h is specific enthalpy. It is readily deduced from the general equations that 
the x-component of the magnetic field is a constant (denoted here by Bo) and that 
the electric field is zero. 

Using the notation and co-ordinate system shown in figure 1 and the rational- 
ized M.K.S.Q. system of units, the equations of motion can be written in the 
following convenient form : 

dB 
ax A- =uB-wBO = (u-%)B+(B-BZ)U,-(W-W,)BO = J(B,w,u), ( l a )  

q- aw = mw-- = BO 
ax Y Y 

BBo m(w - w,) - (B  - B,) - = L(B, w),  

B2 - B% 
u = M(B,u,T), ( I c )  

2Y 

m B2 - B' 

au 
ax q'u- = mR(T-T,)+m (u-u,)+- 

mRT, m 
2U k- = mC,,(T - T,) f ___ (u - u,) - - (u - u , ) ~  -- (w - w,), - ___ 

dT 
ax U ,  2 2 2Y 

The coefficients describing physical properties of the fluid are shear coefficient 
of viscosity q, longitudinal coefficient of viscosity 7 ", coefficient of thermal 
conduction k, magnetic permeability p, electrical conductivity (r, magnetic 
diffusivity h = 1 / p ,  and specific heat at constant volume C,,. Equation ( 1  a )  is a 
combination of Ohm's law and Maxwell's current equation; (1 b) is the once- 
integrated tangential momentum equation with the constant of integration equal 
to zero since w = B = 0 at 1 (the uniform flow region upstream of the shock, 
i.e. x = -00). Equations ( l c )  and ( l a )  are the longitudinal momentum and the 
energy equations, respectively, integrated once and with constants of integration 
evaluated at  2,  the uniform flow region downstream of the shock (x = +m). It 
should be noted that it has been implicitly assumed in these equations (and in the 
shock relations) that the current is free to flow in closed circles. Thus, the present 
one-dimensional problem must be viewed as an approximation to an axisym- 
metrical problem a t  a large distance from the axis of symmetry. 

To avoid unnecessary complications in notation and equations, system (1 )  will 
be retained throughout this paper in its dimensional form, as written above. In  
addition, it is convenient to refer to all of the parameters h,q,q", and k as 
diffusivities in the various order-of-magnitude statements, even though the actual 
diffusivities are A, q/p, f / p ,  and k/pC,. Thus, 7, q", k < h should be interpreted as 
an order-of-magnitude statement about the corresponding diffusivities. 

4-2 
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The switch-on shock relations are obtained by setting the left-hand side of 
system (1) equal to zero at 1 and/or 2. The following simple shock relations 
obtained from (1 a)  and (1 b )  are listed here for future reference : 

“$2 = W2B,, Pa) 

Equations ( 2 a )  and ( 2  b)  were used to obtain the second forms of the right-hand 
sides of (1 a )  and (1 b) .  

Solutions of system (1) may be represented as integral curves between the 
singularities at  1 and 2 in the (B,  w,  u, T) phase space with x as a parameter along 
the curves. In  general, this system of equations must be solved numerically 
using methods similar to those of Gilbarg & Paolucci (1953) and Marshall (1956). 

When order-of-magnitude differences occur among the diffusivities, the system 
of equations and, hence, the solution can be approximated to by allowing the 
appropriate diffusivities to approach zero. Such limiting cases are simpler and 
many of them can be solved analytically. For example, if q, q”, k < h one can set 
the left-hand sides of (1 b) ,  (1 c)  and ( I d )  equal to zero (i.e. q = q“ = k = 0) and 
the resulting system of equations is readily solved analytically, the approximate 
solution being uniformly valid to order unity for a certain range of conditions. 
Of the many possible order-of-magnitude orderings of the four diffusivities, a few 
represent physically realistic cases, the others being primarily of mathematical 
interest for the system (1). In  general, ‘singular perturbation’ or ‘boundary- 
layer type ’ problems arise in such limiting cases, these problems being heralded 
by double-valued shock profiles. 

The limiting cases corresponding to several order-of-magnitude orderings will 
be investigated in detail in this paper. Approximate solutions that are uniformly 
valid to first order will be sought. A very convenient non-standard method for 
handling the singular perturbation problems for any limiting case will be pre- 
sented. The method is based upon a study of the limiting forms of the integral 
curves in the phase space. 

Order-of-magnitude orderings that correspond to physically realistic 
possibilities will now be discussed. Within the assumptions of this paper, the 
diffusivities q and q’l should be of the same order of magnitude.? A natural 
ordering arises in highly ionized gases because the Prandtl number becomes small, 
i.e. 7,q” < k. The magnetic diffusivity will be large compared with the others over 
a large range of hypersonic flow conditions. This leads to the physically realistic 
cases q, q”, k < h and q, q” < k < A. At high enough temperatures, h can be of the 

If the gas were highly ionized, the density were low enough, and the magnetic field 
were strong enough, T /  and T / ~  could differ considerably but, under such conditions, k and 
CT would have to be tensors. 
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same order or much less than the other diffusivities. This leads to the possibilities 
7,7" < k,h;  7 , ~ "  < h < k; q,q",h < k; andh < 7 , ~ "  4 k. 

It is useful to write out two reduced systems of equations obtained from 
system (1) by, first, setting 7 = 0 and eliminating w from the other equations and, 
secondly, setting A = 0 and eliminating B from the other equations. The notation 
7 = 0 (or h = 0) is just a convenient way of making the mathematical statement 
that the left-hand side of (1 b)  [or (1 a)]  is set equal to zero. For 7 = 0, the reduced 
system is 

- u2) B, A-=(  
d B  
ax 

B2 - Bg 
u, 

2lU 

du 
7"~- ax = mR(T-T2)+m (u-uu,)+--- 

dT 
k -  ax = mC,(T-T2)-(u-u,) 

B w = u - .  
2Bo 

with w given by 

For h = 0, the reduced system is 

u dw 
m dx uz) w, q--- = (a- 

u2 

w; + u(u - u2) - - U 

u2 du 
7"-- rn ax = R(T-T2)u+u (U-U,)+?(W~-~W;), 

u d T  
m dx k-- = C,(T-T2)u-- 2 

W 

U 
B = - B , .  with B given by 

Equations ( 2 )  have been used to obtain these forms. The limiting integral curves 
in these three-dimensional phase spaces will be shown later. For the moment, 
these reduced systems are useful to illustrate in a simple way the occurrence of 
discontinuities or boundary layers. 

To illustrate the difficulties encountered, consider the case 7, h < T I ' ,  k. The 
standard procedure for obtaining the lowest order or first approximation is to 
set 7 = h = 0 in system (1) and study the consequences. This also corresponds to  
setting h = 0 in system (3) or 7 = 0 in (4). Consider system (3). When A = 0, at 
least one of the quantities B and u - uz is zero. Since the boundary condition at  
1 (x = -co) is B = B, = 0 (i.e. no tangential component of magnetic field), the 
integral curve from 1 to 2 must leave 1 in the plane B = 0 and must lie in that 
plane until u = u2 and then the curve must lie in the plane u = u2 until 2 (x = + co) 
is reached, unless difficulties arise. Equations ( 3 b )  and ( 3 c )  with B = 0 are the 
equations for a hydrodynamic shock between the upstream end-point 1 and a 
downstream end-point 3 that is different from 2 (it can be shown that T3 2 T, and 
us < u2). Hence, the integral curve leaves 1 along some integral curve of a hydro- 
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dynamic shock. In  the plane u = u2, the integral curve would have to satisfy the 
equations [ (3b)  and ( 3 c )  with u = u2] 

B2 - B2 
mR(T - T') + ___ 2u2 = 0, 

2P 
dT 
ax 

k - = mCJT - T2). 

The second equation shows that T reaches its downstream value T2 at x = - 00. 

Since the upstream value TI also occurs at  x = -00, this would mean that the 
temperature profile is double valued. The other quantities of interest will also 
exhibit double-valued profiles [cf. figure D 5 d  in Hayes (1958) and figure 4 in 
Bleviss (1959)l. In  order to recover single-valuedprofiles and satisfy the boundary 
conditions a t  x = + 00 one needs to insert a discontinuity for 7 = A = 0. To obtain 
a uniformly valid approximation for 7 and A near zero this discontinuity must be 
replaced by a thin transition layer (referred to hereinafter as a boundary layer). 

Once it has been determined that a discontinuity or boundary layer is necessary, 
a standard method can be followed for determining the location of the boundary 
layer and the first-order approximate equations that determine its structure. 
Roughly and briefly, the method is as follows. One assumes a location for the 
boundary layer and writes the variables in appropriate form relative to this 
location. Then one divides each of the variables, dependent and independent, by 
a different unknown scale factor, each factor being the parameter that goes to 
zero to some, as yet undetermined, positive exponent. A scale factor describes 
how the corresponding variable behaves in the boundary layer as the parameter 
goes to zero. Therefore, the variable divided by the scale factor is an O( 1) quantity 
in the boundary layer. One then substitutes these O( 1) variables into the full set 
of equations, makes assumptions about the exponents, obtains reduced sets of 
equations to first order as the parameter goes to zero, and sees if any of the 
solutions to these sets of equations is sensible and consistent with the boundary 
conditions for the discontinuity. If proper equations cannot be found a different 
location is assumed and the procedure is repeated. In  the process, both the 
equations and the scale factors are determined. If, as in the present case, there 
are several variables, it is clear that the method can be tedious. Often, the pro- 
cedure can be considerably shortened by judicious guessing as to  the location of 
the boundary layer and which terms in the equations should be retained. 

In  the present problem there is a much more convenient and direct method for 
determining the boundary-layer equations. It turns out that the discontinuity or 
boundary layer is always located at the downstream side of the switch-on shock. 
This result was assumed from previous experience and then proved by its success 
in all cases studied. This is the reason why all of the equations have been written 
in terms of the end-point 2. By studying the behaviour of the integral curves in the 
neighbourhood of 2 and requiring that these curves approach 2 as x + + 00, the 
conditions for the appearance of the boundary layers, the scale factors, and, 
hence, the boundary-layer equations to  first order are readily determined. 
With this information, the remaining portions of the integral curves are easily 
deduced. 



The structure of magnetohydrodynamic switch-on shoch 55 

3. Behaviour of the intergral curve near 2 

in 
B 

Following the usual procedure for studying the behaviour of the integral curve 
the neighbourhood of a point, the system (1) is linearized near 2 by writing 
= B2+AB, etc., and dropping higher-order terms. The solution of this 

system is assumed to be of the form 

B-B2 = AB = CeKx, 

w - w2 = Aw = C' eKx, 

etc. 

A solution is possible only if K satisfies the quartic 

rLB Jw - (JB - A K )  (Lw -rK)I [(NT - k K )  (Mu -7"u2K) - NuNT1 

+ J,MB(NT-~K)(L,--K) = 0, ( 5 )  where 

J, = - Bo, Ju = Bz, 

Other relations of interest are 

B: LBJw-JBLw = - -mu2 = 0, 

NT&-NuMT = -(u%-ag), 

lu 
m2CV 
u2 (7) 

JB(NTMu-NuMT)-JuMBNT = m2C,,(ui-a,2-b2) 4 
JBMu-JuMB = m u2----b2 . 

( 2  5 4 J 
In these equations y is the ratio of heats, a2 is the hydrodynamic sound speed 
downstream of the shock, and b,, defined in (%), is a magnetohydrodynamic 
sound speed downstream of the shock. It is important to note that all of the 
quantities (6)  have fixed sign except Mu and that the last three quantities (7) 
can also change sign. 

The slope of the integral curve at 2 is then given by 

Nu B - B ,  AB ? ~ c - L ,  
u-u2 Au ~K-N, '  w-w2 Aw LB ? 

- =--- -- T-T2 AT _ _ ~  - - 

_ -  LB Ju 
AU 

- 
Aw 

(JB - AK) (L, - 7 ~ )  - L, J,' 
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K is required to be negative in order that x + + co as point 2 is approached. (It is 
easy to show that the integral curves leave 1 at x = - co.) In  the limiting cases to 
be studied, this requirement on K indicates immediately the conditions for the 
existence of a boundary layer. Furthermore, the form of K together with (8) 
indicates the scale factors for the various quantities. 

In  the previous section, where the case 7, h < f ' ,  k was briefly considered, it was 
found that if 7 and h were simultaneously set equal to zero a discontinuity must 
occur. This conclusion is readily checked here by setting 7 = h = 0 in (5). Using 
the first equation of (7), the result is K + NJk = mC,,/k. Since K is positive the 
integral curve will not approach 2 as x -+ + co and a discontinuity must be inserted. 

4. Solutions for some limiting cases 
The simplified equations for several limiting cases will now be derived. In 

nearly all cases the solution of these equations involves simple quadrature and the 
solutions are not carried out explicitly since their general nature is clear. 

t""" 

3 

Y 

I 

FIGURE 2. Integral curves in the (B,  u, T) and (w, u, T )  spaces. 

The integral curves for many of these limiting cases are readily sketched in one 
or the other of the three-dimensional phase spaces corresponding to the reduced 
systems (3) and (4). This will become clear when some limiting cases are actually 
considered. For the moment, it is useful to examine the surfaces in the (B, u, T )  
space obtained by setting A, q", and k equal to zero in system (3) and the surfaces 
in the (w, u, T) space obtained by setting 9 ,  r", and k equal to zero in system (4). 
Because of the similarity between systems (3) and (4), the following discussion 
applies to either but, for discussion purposes, only the (B,u,T) space corre- 
sponding to system (3) will be considered. 

Some of the features to be discussed now are shown in figures 2 and 3. Points 1 
and 2 are the singular points corresponding to the initial and final conditions, 
respectively. From equation (3a)  it  is clear that the surface corresponding to 



The structure of magnetohydrodynamic switch-on shocks 67 

A = 0 consists of the two planes B = 0 and u = u2. The curves in the B = 0 plane 
labelled 7" = 0 (1-5-3) and k = 0 (1-4-3) are the intersections of the B = 0 plane 
with the 7" = 0 and k = 0 surfaces, respectively. These curves correspond to the 
so-called ' non-viscous ' and ' non-conducting ' curves in hydrodynamic shock 
theory [see, for example, figure D 5 u  in Hayes (1958)l; points 1 and 3 are the 
initial and final end-points, respectively, for a hydrodynamic shock. The inter- 
section of the 7" = 0 and k = 0 surfaces is shown schematically as the dashed curve 

t B m w  2 

1 

FIGURE 3. Integral curves in the (B, u, T) and (w, u, T) spaces. 

from 1 to 2 in figure 3 (1-6-2 in figure 2). There is, of course, a continuation of this 
curve from 2 to 3. An important property of the k = 0 surface that should be noted 
is that the straight line u = u2, T = T2 (4-2) lies in this surface; only B and w vary 
along this line. These surfaces play important roles in many of the limiting cases 
to be studied. 

(A) 7, r", k < h (low electrical conductivity) 

Although this limiting case was treated in detail by Bleviss (1959)' it  is repeated 
here to illustrate the present method. Setting 7 = 7" = k = 0 in ( 5 ) ,  the result 

where (2d)  and the first two equations of (7) have been used. Since K is negative 
only when u2 > a2, the procedure of setting 7 = 7'' = k = 0 leads to a uniformly 
valid limiting solution only when u2 > a2. 

The above equation will now be used to illustrate several additional important 
conclusions that can always be drawn from the result for K. The dissipation 
mechanism is always clear from the diffusivity contained in the result. In  the 
present case h is the diffusivity and Joule heating is the dissipation mechanism. 
Since the thickness of a one-dimensional shock wave is always proportional to the 
diffusivities involved, the scale factor for x is immediately apparent. Note that 
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this is consistent with the fact that K has the dimensions of reciprocal length and is 
always essentially proportional to the reciprocal of a diffusivity. 

Using the fact that K = O( l / A ) ,  the following conclusions can be drawn from (8) 

AB 
Au 
- = o(i1.J 

With AB, Aw, Au and AT all O(1) and with the x-range over which these variables 
change appreciably (i.e. the shock thickness) alsoO( 1) since h = O(l),  the approxi- 
mate equations for this limiting case are obtained from (1) by simply setting 
7 = 7" = k = 0. This corresponds to setting 7" = k = 0 in (3). This simplified 
system of equations can be reduced to a single first-order ordinary differential 
equation that is readily solved. 

The integral curve in the (B,  u, T )  space is the curve 1-6-2 (figure 2), i.e. the 
intersection of the 7" = 0 and k = 0 surfaces. The requirement u2 > a2 restricts the 
results to those curves for which B increases monotonically, i.e. curves for which 
B is single-valued between 1 and 2. 

u2 < a2 
When u2 < a,, K cannot vary as l / A  but must instead be a function of one or 

more of the diffusivities 7 , ~ "  and k. This means that the solution obtained by 
setting 7 = 7" = k = 0 must be discontinuously adjusted through a boundary 
layer to the final conditions at 2. The nature and location of this boundary layer 
will now be determined. 

Using the fact that AK 9 1, (5) reduces to 

(L,-~K)[(NT-~K)(M,-~"U,K)-N,MT] + 0. 
The first factor cannot be zero since then K would not be negative. Therefore, K is 
given by the quadratic equation 

(NT -kK) (Mu -7"UZ K )  - NuMT + 0. (11) 

With NT Mu - Nu MT < 0, this equation yields negative values for K. Note that 
since 7 is not contained in the result for K the dissipation in this boundary layer 
must be due to viscosity (7") and heat conduction (k) only, just as in the case of the 
hydrodynamic shock. Then the essential results for this boundary layer will be 
independent of how 7 is related to 7'' and k. Some minor results are affected by 
this relationship and, to avoid writing out all the cases, the realistic assumption 
7 = O(f) is made. 

Assuming 7" and k to be of the same order and writing k = q" [with 01 = O( l)] 
in (ll), it is clear that K = 0(1/7"). Using this result, (8) becomes 

AT Aw 
Au Au 

AB 
Aw Au 
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This shows that to first order w and B are constant through this boundary layer, 
having their downstream values w, and B,. 

With the scale factors known from the result for K and (12) ,  the following O(1) 
quantities for this boundary layer can now be defined 

Subsituting these new variables into ( 1 )  and carrying only the largest terms in 
each equation, the first-order equations for the boundary layer are 

-- - u*B,, dB* 
dx" 

BOB* 
- = mw*--, dw* 

dz* P 
du* 

u- dx* = m R T * + m  

Note that ( 1 3 4  and (13d)  can be obtained from ( 1  c )  and ( 1  d )  by setting w = w, 
and B = B,. Then (13c)  and (13d)  are the equations for a hydrodynamic shock 
and must be solved simultaneously for u*(x*) and T*(x*). Knowing u*(x*), 
B*(x*) can be obtained from (13a)  and then w*(x*) can be obtained from (13 b). 
With B*(x*) a known function, it is easy to show that the solution of (13 b)  is 

(13b') 
P 

(13a)  and (13 b') arise because B*(x*) and w*(x*) have slope discontinuities across 
the boundary layer. 

The x position of the boundary layer is determined by the criterion already 
discussed by Bleviss (1959). Briefly, this can be described by examination of the 
typical shock profiles u(x) and B(x) shown in figure 4. The curves abcd are the 
profiles obtained by setting 7 = 7" = k = 0 in (1) .  The boundary layer occurs at b, 
where B = B,, and the solid curves show the correct single-valued profiles. 

The integral curve in the (B, u, T )  space is indicated in figure 2. The curve 1-6-2 
intersects the plane B = B, at 6 and at 2. The correct integral curve is then the 
solid curve from 1 to 6 followed by a curve from 6 to 2 that lies in the plane B = B,. 
The portion of the curve from 6 to 2 is the integral curve for a hydrodynamic 
shock between 6 and 2 and the properties of this curve are well known. Note that 
x is constant along the curve from 6 to 2. The solid curve 6-7-2 corresponds to the 
special case treated below. 

(B) 7 , ~ "  < k << A 
This is a special case of (A) in which y = O ( f )  but the Prandtl number is small. 
It is clear that the foregoing results are altered only for the case u, < a, and that 
only the portion of the integral curve from 6 to 2 is affected. Since this is a hydro- 
dynamic shock for zero Prandtl number the results are well known. 
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Assuming K = O ( l / k )  and using the fact that $'K < 1, (11) reduces to 

NT Nu -Nu M, - mC,,(u: -a:) 
K =  - 

kMu 4u: -aYY) * 

This is negative for at/y < u; < a:. For this case it is easily shown that the 
resulting equations for u and T are those for a hydrodynamic shock with 7" = 0, 
i.e. 

d T  mRT, m 
k-- = mC,(T - T,) + - (U - u2) - - (U - u2)2. dx U2 2 

In figure 2 the integral curve from 6 to 2 is the intersection of the plane B = B, with 
the surface 7" = 0. The condition a;/y < u% -= a: restricts this case to those curves 
for which T increases monotonically from 6 to 2. Then, along the integral curve 
the dissipation mechanisms are Joule heating between 1 and 6 and heat conduction 
between 6 and 2. The case shown in figure 2 is discussed below. 

A 

X 

FIGURE 4. Shock profiles u(z) and B(z)  and location of boundary layer for u, < a,. 

4 < 4 l Y  
To obtain a negative value for K ,  it  is necessary to take K = O( 1/11") in (1 1). The 

result is 

There is now a second boundary layer within the first that discontinuously adjusts 
the solution for the first boundary layer to the final conditions at 2. This case 
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corresponds to that described by Bleviss (1959) as a 'shock within a shock within 
a shock'. Using (8), the slope of the integral curve at 2 is given by 

I AT 
Au 

A B  A B  
Aw A u  - = O ( l ) ,  - = 06). 

For this second boundary layer only u changes, the other quantities being constant 
at their final values. Defining the O(1) quantities 

U* = Au, 
k 

T *  = 7 AT, 
7 

h 
W* = 7 Aw, 

7 
the equations for the second boundary layer are 

where (18b) simplifies in the same way as (13b). u is the only quantity that is 
varying and it is determined by (18c), which is readily solved. (18c) is obtained 
from (1 c) by setting T = T, and B = B2. The integral curve is shown in figure 2 
as 1-6-7-2. The curve from 6 to 7 is the same as that discussed just above but in 
this case the curve does not increase monotonically to 2; it intersects the plane 
T = T2 at 7.  The portion of the curve from 7 to 2 is parallel to the u-axis. Along the 
integral curve the dissipation mechanisms are Joule heating between 1 and 6, 
heat conduction between 6 and 7, and viscosity (7") between 7 and 2. 

( C )  h < 7'' g k 4 7 (high electrical conductivity) 

When h is much less than the other diffusivities the case will be referred to as one 
of high electrical conductivity. This case is essentially case (B) with 7 and h 
interchanged, and it is being presented to show the similarities of and the dif- 
ferences between the two cases. Only the main results will be given. It will be 
found that there are comparable integral curves in the (B, u, T )  and (w, u,  T )  
spaces for the two cases, but that the conditions for the appearances of the 
boundary layers and the equations governing the shock structure are quite 
different. 

u; > a; + 6; 

When ui > a; + bg, K = O(l/q) and the governing equations are obtained from 
(1)  by setting h = f' = k = 0. The integral curve in the (w, u, T )  space is 1-6-2 in 
figure 2 with w increasing monotonically from 1 to 2. The dissipation is due to 
viscosity (7). 



62 Z. 0. Bleviss 

a?& + bg < ug < a; + bg 
When u; < a; + bg a boundary layer arises regardless of the relative magnitudes 

of A, 7" and k. This boundary layer is not a hydrodynamic shock but is, instead, 
the parallel shock studied by Marshall, i.e. a shock through which the flow is not 
turned but the magnetic field parallel to the shock front varies. For this shock, 
B, does not interact with the flowing gas. The integral curve goes from 1 to 6 and 
then from 6 to 2 in the plane w = w2. Note that B varies from 6 to 2. 

With 7" < k, a single boundary layer arises if aE/y + bg < ui. The integral curve 
from 6 to 2 is the intersection of the w = w2 plane and the 7" = 0 surface with 
T increasing monotonically. The dissipation mechanism is heat conduction. The 
equations governing the changes in B, u and T are (la),  ( l c )  and (Id)  with 
h = 7'' = 0 and w = w2. 

ug < ai/y + bi 

A second boundary layer now arises in which the dissipation is due to viscosity 
(7") and through which T = T2. The integral curve is 1-6-7-2. The equations for 
Band u are (la) and ( l c )  with h = 0, w = w2 and T =T2. 

(D) 7 < h < q", k 
Although unrealistic, all cases where 7 and h are small compared with the other 
diffusivities have a number of interesting features. Since 7 and A cannot be 
simultaneously set equal to zero, this case wiIl always involve at least one 
boundary layer. As previously discussed, the integral curve leaves 1 in the plane 
B = 0 along some integral curve for the hydrodynamic shock and this part of the 
integral curve must terminate in the u = u2 plane. The exact terminus is deter- 
mined by a study of the boundary layer which adjusts the solution to the 
conditions at  2. 

If q is set equal to zero and it is assumed that K = O( l/h) in (5) ,  a negative result 
cannot be obtained for K. However, if 7 = 0 and it is assumed only that K contains 
h in such a way that 7 " ~  % 1, ( 5 )  reduces to 

(NT-kK) ( u ~ ~ ~ " K ~ - J ~ M ~ )  + 0. 

Only the second parenthesis leads to K < 0, with the result 

This result is independent of the order of magnitude of k K  and of the relative orders 
of magnitude of k and 7". Note that kK can be < 1 , 0 (  l), or 9 1 when k < q" and 
that k K  B 1 when k = O(7") or k 4 7''. The essential results are the same for all of 
these cases and, to avoid writing them all out, it will be assumed that k~ 4 1. 
Then, from (S), 

AT - = o(k) = O(J&), g = o(&) = o(J%) ,I 
Au 

Aw 

(20) 
AB _ -  AT - .(a). aw- - O(l) ,  
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The integral curve in the (B, u, T )  space (figure 2) is now clear. u = u2 and 
T = T, through the boundary layer. Then this portion of the integral curve is 4-2, 
the intersection of the u = u2 and T = T2 planes, and only B (and w)  varies along 
this portion. The portion of the integral curve that lies in the B = 0 plane must 
extend from 1 to 4. For 7" = O(k) ,  a typical integral curve is 1-8-4-2. The curve 
1-8-4 is parallel to the u-axis a t  4, i.e. aT/au = 0. 

The curve 1-8-4 is obtained by solving ( l c )  and (Id)  with w = B = 0. When 
k < 7" the integral curve is 1-9-4-2 and the equations for 1-9-4 are the same as 
for 1-8-4 but with k = 0. When 7" < k the integral curve is 1-5-4-2. Now, two 
boundary layers occur, the first from 5 to 4 and the second from 4 to 2. The 
equations for the portion 1-5 are (1 c )  and (1 d )  with 7" = w = B = 0. The equation 
for the portion 5-4 is ( l c )  with T = T2 and B = 0. 

The detailed characteristics of the boundary layer 4-2 will now be studied. 
The following O( 1) quantities are defined: 

The orders of magnitude of the time rate of energy dissipation per unit volume for 
the four dissipation mechanisms are 

This shows that the dissipation is due to Joule heating and viscosity (7"). 
The order of magnitude of the entropy increase across the boundary layer can 

be obtained by integrating the time rate of entropy production per unit volume 
across the boundary layer 

This means that there is no entropy increase across this boundary layer to first 
order ! This result can also be derived from the fact that u and T and, hence, p and 
p are constant through the boundary layer. 

Using (21), the system (1)  reduces to 

du* B2 - Bi -=- 
ax* 2p ' 
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Even though u = u2, essentially, in the boundary layer, u is still coupled to B 
through the pair of equations ( 2 2  a )  and ( 2 2  c ) .  Once this pair of equations is solved 
for u*(x*) and B*(x*), w*(x*) and T*(x*) are obtained from ( 2 2 b )  and ( 2 2 4 .  

The solution of ( 2 2 u )  and ( 2 2 c )  can be reduced to a single quadrature in the 
following way. It is convenient to work with the variable B2 instead of B*. 
Dividing one equation by the other and integrating leads to the result 

If this is substituted into ( 2 2 u ) ,  B(x*) is given implicitly by 

where the constant determines the arbitrary origin of x*. 

and w being interchanged. 
If 7 and h are interchanged the results are essentially the same, the roles of B 

(El < 777” < k 
This is the physically realistic case of high electrical conductivity. Again, since h 
and 7 cannot both be set equal to zero, a boundary layer will always occur. Then 
it is expected that K will contain both 7 and 7”. 

Setting h = 0 and letting Y K  = O(l ) ,  7 ” ~  = 0(1) ,  and k~ 1, (5) reduces to 

~KJ&I!.!.,-?j”U,K) +J,N-(L,-~K) = 0.  ( 2 3 )  

This quadratic equation yields negative values for K without further restrictions. 
Writing 7” = a7 [with a = O(l)]  in ( 2 3 ) ,  it is clear that K = 0(1/7).  Then (8) 

becomes 

AB 
Aw - = O(l) ,  

A B  
Au 

( 2 4 )  

The temperature is constant through this boundary layer at  its final value T,. 
Carrying through the analysis, it  is easy to show that the equations governing 

the variations of B, w and u are (1 a) ,  (1 b) and (1 c) with h = 0 and T = T2. Using 
system ( 4 ) )  the equations for w and u can be written 

W 

U with B given by B = - B,. ( 2 5 4  

From (25a) and ( 2 5 b )  it is readily deduced that the upstream and downstream 
end-points in the (w, u, T )  space (figure 3 )  are 5 and 2 ,  respectively. A typical 
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integral curve for this boundary layer is 5-6-2, where the curve lies in the T = T, 
plane. Since 7" < k, the portion of the integral curve from 1 to 5 lies along the 
intersection of the w = 0 plane and the 7" = 0 surface. Along the integral curve 
the dissipation mechanisms are heat conduction between 1 and 5 and viscosity 
(7 and 7") between 5 and 2. 

(F) h < 7 < 7" < k 
This is a subcase of (E) in which 7 < 7". Using (23) the result for K is 

and it is clear that this is just case (D) with 7" Q k and 7 and h interchanged. Then 
the integral curve in the (w, u, T )  space of figure 3 is 1-54-2 with the dissipation 
due to heat conduction between 1 and 5, viscosity (7") between 5 and 4, and 
viscosity (7 and 7") between 4 and 2. As before, there is no entropy increase 
between 4 and 2. 

(G) < rfr  < 7 < k 
This is a subcase of (E) in which 7" < 7. Assuming K = 0(1/7) and setting 7" = 0, 

This is negative for ug > a i / y  + b;. The equations for this case are given by the 
system (25) with 7" = 0. The integral curve is 1-5-7-2 following the dashed curve 
from 7 to 2. The portion 5-7-2 is the intersection of the T = T, plane and the 
7" = 0 surface. The condition ug > ai /y  + bi restricts the portion 5-7-2 to curves 
for which w increases monotonically from 5 to 2. The dissipation along 5-7-2 is 
due to viscosity (7). 

ug c a;/y + b% 

Assuming K = O( l/q"), (23) reduces to  

JBM,-J,MB - m(ui -a i /y -b t )  
K =  - 

7% JB 7"ut 
(27) 

A second boundary layer is now obtained. The integral curve is the heavy curve 
1-5-7-2, with 7-2 along the intersection of the w = w, and T = T, planes. The 
equation for u along the portion 7-2 is (25b) with w = w2 and the dissipation is 
due to viscosity ( f ) .  

(H) 7,7" Q 4 k 
This is a physically realistic case with intermediate electrical conductivity. It can 
be shown that this case is very similar to that of (G) but with 7 and h interchanged. 
For ut > the integral curve in the (B,  u, T )  space of figure 3 is again 1-5-7-2, 
following the dashed curve from 7 to 2. For U: < ai /y  the integral curve is the 
heavy curve 1-5-7-2 and the dissipation mechanisms are heat conduction 
between 1 and 5, Joule heating between 5 and 7, and viscosity (7") between 7 and 2. 

5 Fluid Mech. 9 
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(1) 7" < k < A 4 7 
In  all the cases that have been studied, there have been at most two boundary 
layers. With four diffusivity parameters, it would be expected that for some order- 
of-magnitude orderings there would be three boundary layers, the maximum 
number possible. The present physically unrealistic case is being presented to 
illustrate one such case. Only a brief summary of the results will be given. 

ui > a: + b; 

The results here are the same as for case (C) when ui > at + b;. 

a: c ui < a; -t bi 
For this condition the first boundary layer occurs. w is constant and equal to 

w, through this boundary layer. A plot of w(z), using the equations for W E  > a: + bt, 
would be similar to that shown for B(z) in figure 4 and, similarly, the location of 
the boundary layer is determined by the condition w = w,. The dissipation in this 
boundary layer is due to Joule heating and the equations governing the variations 
in B, u and T are (1 a), (1 c) and (1 d )  with w = w, and k = 7" = 0. 

aily c ut c a: 

Now, a second boundary layer arises. In  general, when u, < a2 this boundary 
layer is simply a hydrodynamic shock, regardless of the relative magnitudes of 
7" and k. With 7" < k, the condition u: > a:/y guarantees that T increases mono- 
tonically through the boundary layer. B = B, (and w = w,) through this 
boundary layer and the location of the second boundary layer within the first is 
determined by this condition. The dissipation is due to heat conduction and the 
equations for u and T are obtained from (1 c) and (1 d )  by setting w = w,, B = B, 
and 7" = 0. 

4 < ailr 
For this condition, a third boundary layer occurs. Only the velocity u varies 

through this boundary layer and the dissipation is due to viscosity (7"). The 
equation for u is (1 c) with B = B, and T = T,. 

(J) 727" < k,h 
This case and the following one complete the list of physically realistic cases 
given in $2. The results will be summarized very briefly. 

The integral curve in the (B, u, T) space is a curve between 1 and 2 that lies in 
the 7" = 0 surface and is bracketed by the curves 1-6-2 (figure 2) and 1-5-7-2 
(figure 3). This case reduces to (B) when k < hand reduces to (H) when h 4 k. The 
system of equations for this case is (1) with 7 = 7" = 0 or the reduced system (3) 
with 7" = 0. The conditions for the appearance of boundary layers are more com- 
plicated than for cases (B) and (H) and will depend upon the relative magnitudes 
of k and A. These conditions are determined from the quadratic equation for K 
obtained by setting 7 = 7" = 0 in (5 ) .  
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(K) A,r],r]" < JC 

Since A and r] cannot be set equal to zero simultaneously, a boundary layer must 
occur. Upstream of the boundary layer the integral curve is 1-5 in either the 
(B, u, T )  or (w, u, T) space. This curve is a portion of an integral curve for a hydro- 
dynamic shock and the equations that govern the variations of u and T along this 
curve are (1 c) and (1 d) with 7'' = w = B = 0, the dissipation mechanism being 
heat conduction. The boundary layer occiua between 5 and 2, the temperature 
being constant at  its final value T,. The integral curve for the boundary layer 
cannot be sketched in the (B, u, 2") or (w, u, T) space since h and 7 are of the same 
order of magnitude. The equations that govern the variations of B, w and u 
through the boundary layer are (1 a), (1 b )  and (1 c) with T = T,. 
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